0. Übungsblatt: Diskrete Mathematik

Aufgabe A. (Mengen) T
Betrachten Sie die Mengen $A = \{a, b, c\}$ und $B = \{a, x, y, z\}$.

1. Welche Elemente enthält $A \cap B$, $A \cup B$, $A - B$, $B - A$?

2. Erinnerung: $\mathcal{P}(X)$ bezeichnet die **Potenzmenge** der Menge X.
 Welche Elemente enthält $\mathcal{P}(A)$?

3. Erinnerung: Mit $X \times Y$ bezeichnet man das **kartesische Produkt** der Mengen X und Y.
 Welche Elemente enthält $A \times (A - B)$?

Aufgabe B. (Mengen und ihre Mächtigkeit) T
Es sei im folgenden A eine Menge mit m Elementen und B eine Menge mit n Elementen. Wie viele Elemente hat dann:

1. $\mathcal{P}(A)$ bzw.

2. $A \times B$?

Begründen Sie Ihre Antworten!

Aufgabe C. (Mengen und ihre Mächtigkeit) T
Erinnerung: Zwei Mengen X und Y heißen **gleichmächtig**, falls es eine Bijektion $f : X \rightarrow Y$ gibt.
Beweisen Sie: Für jede Menge A gilt: A und $\mathcal{P}(A)$ sind nicht gleichmächtig.
Hinweis: Aufgabe C ist die schwierigste auf dem Aufgabenblatt.

Aufgabe D. (Vergleichsrelationen) T
Jüngeren Schülern macht es oft Spaß, sich in ihrer Körperlänge zu vergleichen.
Betrachten Sie daher eine Klasse K von Schülern und diskutieren Sie Eigenschaften der Relationen:

1. $s < s'$: Schüler s ist kleiner als Schüler s';

2. $s \approx s'$: Die Schüler s und s' sind gleich lang.

Betrachten Sie nun die Mengen $[s] = \{s' \in K \mid s \approx s'\} \subseteq K$. Wir definieren auf der Menge $K' = \{[s] \mid s \in K\} \subseteq \mathcal{P}(K)$ zwei Relationen:

- $[s] \leq_1 [s']$ genau dann, wenn Schuler $x \in [s]$ und $x' \in [s']$ gibt mit $x < x'$;

- $[s] \leq_2 [s']$ genau dann, wenn für alle Schüler $x \in [s]$ und alle Schüler $x' \in [s']$ gilt: $x < x'$.

Zeigen Sie: $[s] \leq_1 [s']$ genau dann, wenn $[s] \leq_2 [s']$.

Aufgabe E. (Grammatik) T
Konstruieren weitere Beispielworter in der Sprache EXPR. Wie ist die Grammatik zu erweitern, wenn auch längere Variablennamen über $\{a, b\}$ vorkommen sollen?
Wichtige Informationen zu Informatik III

- Inhaltliche Grundlage der Vorlesung ist das Buch von Uwe Schöning: *Theoretische Informatik kurz gefasst*, Spektrum Verlag (früher BI-Verlag).

- Bei Fragen stehen wir Ihnen grundsätzlich jeder Zeit per Email zur Verfügung. Unsere Sprechzeiten, an denen Sie uns im Büro antreffen können, sind:

 - K.-J. Lange: lange@informatik.uni-tuebingen.de, Sand 13, Zimmer 009, nach Vereinbarung oder donnerstags 13:30-14:30 Uhr.

 - K. Reinhardt: reinhardt@informatik.uni-tuebingen.de, Sand 13, Zimmer 140.

- Wir bitten Sie, die Aufgabenblätter in Gruppen bis zu 5 (von Leuten aus jeweils einem Tutorium) zu bearbeiten und abzugeben. Aufgabenblätterbearbeitungen mit mehr als 5 Namen gelten als nicht abgegeben.

Spielregeln zum Scheinerwerb:

Vereinfacht gesagt, erhält derjenige einen Schein, der 40% der zu verteilenden Aufgabenpunkte der mit H gekennzeichneten Aufgaben erhalten hat und erfolgreich an seinem Tutorium teilgenommen hat. (Die mit T gekennzeichneten Aufgaben werden jeweils mündlich in den Übungsgruppen besprochen. Man sollte sich diese Aufgaben also entsprechend vor den jeweiligen Übungsgruppen ansehen.)

Wie erhält man Aufgabenpunkte und was bedeutet eine erfolgreiche Teilnahme genauer?

Dazu ist kurz zu erklären, wie wir uns den Ablauf eines Tutoriums vorstellen: Zu Beginn des Tutoriums läßt eine Liste herum, in der steht, welche Aufgaben teile einzeln vorgerechnet werden. Zu jedem Aufgabenteil vermerkt nun jeder der Anwesenden, ob er bereit ist, diesen vorzurechnen. Diese Liste hat folgende Auswirkungen:

1. Die nach der Korrektur erzielten Punkte für einen Aufgabenteil zählen nur dann für einen der abgebenden, falls dieser sich durch Eintrag in namentliche Liste bereiterklärt vorzurechnen.

2. Der Tutor wählt einen der laut Liste „bereiten“ Studenten zum Vorrechnen des betreffenden Aufgabenteils aus.

Für einmaliges erfolgreiches Vorrechnen gibt es einen Vorrechenpunkt. Ist das Vorrechnen eines Aufgabenteils nicht erfolgreich, so gehen die nach der Korrektur erzielten Punkte für den betreffenden Aufgabenteil nicht in Wertung und es gibt keinen Vorrechenpunkt.

Ein Student hat erfolgreich an einem Tutorium teilgenommen, wenn er wenigstens 2 Vorrechenpunkte auf diese Weise erzielt hat.