Blatt 2

Aufgabe 1: (Zwei mögliche Bäume)

\[
\begin{align*}
S &\rightarrow aSa \\
 &\rightarrow aAa \\
A &\rightarrow aAa \\
 &\rightarrow a
\end{align*}
\]

Aufgabe 2:

1. Die Aussage gilt nicht, denn
 \[a^2 a e \{ w e \{ a, b \}^* | \#_a(w) = 2 \cdot \#_b(w) \}\]
 aber \[a^2 a \notin L(G)\] da alle erzeugbaren Satzförmen die maximal drei Zeichen lang sind, also \(SS, ABAB, AA\) sind...

2. Nein, denn \(aaa\) bzw. \(aaa\) liegt immer noch nicht in \(L(G)\).
 Eine zusätzliche Regel \(S \rightarrow aSa bSa\) würde das Problem behoben. Ausführw. \(\downarrow\) Überfluss als

Aufgabe 3:

P: \(S \rightarrow AaAaAaA\)
 "die drei \(a\)’s"

\[
\begin{align*}
A &\rightarrow AaAaA \\
A &\rightarrow AaAaA \\
A &\rightarrow \epsilon
\end{align*}
\]

Blatt A, 1.4
 "gleich viele \(a\)’s wie \(b\)’s"

\(G = \{ S, A \}, \{ a, b \}, P, S \)

Aufgabe 4:

Welche Regeln erzeugen Terminiare?

\[
\begin{align*}
S &\rightarrow aSAb \\
\rightarrow bSAa \\
S &\rightarrow a \\
\rightarrow \epsilon
\end{align*}
\]

\(L(G) = \{ x e \{ a, b \}^* | \#_a(x) \geq \#_b(x) \} \)
Aufgabe 5:

Betrachten wir die Regeln:

\[S \rightarrow aS \] erzeugt beliebig viele \(a \)'s und dann \(S \)

\[S \rightarrow Sc \] erzeugt eine gerade Anzahl von \(a \)'s nach dem \(S \)

\[S \rightarrow aAc \] erzeugt ein \(a \) und eine und in der Mitte \(A \).

Bis jetzt sind also beliebig viele \(a \)'s + ein \(a \) vor \(A \) gefolgt von einem \(c \) und zwei weiteren \(a \)'s.

\[A \rightarrow bAb \] erzeugt \(3 \cdot b \)'s, die alle zwischen den \(a \)'s und \(c \)'s stehen werden.

\[A \rightarrow \varepsilon \] Die Produktion wird immer hier terminieren.

\[L(G) = \{ a^{2n+1} b^m c^{2n+1} | m \geq 0, n \geq 0 \} \]

Die kontextfreie Grammatik erzeugen wir analog:

(Typ 3: \(A \rightarrow aA, A \rightarrow a \))

Zuerst \(a^{m+1}, m \geq 0 \) a's

dann soll es weiter gehen: \(S \rightarrow aB_1 \) (\(\Rightarrow \) mind. ein \(a \))

von den \(b \)'s brauchen wir zögerlich \(B_1 \rightarrow bB_2 \)

\(B_2 \rightarrow bB_3 \)

\(B_3 \rightarrow bB_4 \) (\(\Rightarrow \) wieder zwei neue)

\(B_2 \rightarrow bC_1 \) (\(\Rightarrow \) weico mit \(c \)'s)

\(S \rightarrow aC_0 \) (\(\Rightarrow \) Es können auch \(b \)'s vorkommen...)

jetzt kommt noch ein \(c \) \(C_0 \rightarrow C \)

oder ein \(c \) gefolgt von \(\geq \) Auf. \(c \)'s \(C_0 \rightarrow CC_1 \)

\(C_1 \rightarrow CC_2 \)

\(C_2 \rightarrow C \) \(\Rightarrow \) wieder zwei neue

Aufgabe 6:

Die Lösung ergibt sich direkt aus derjenigen zu
Aufgabe 5 von Blatt 1.

Für jed die beiden bewilligten Regeln hinten, ist
meine Sprache eventuell nicht mehr äquivalent.
(Deutlich kommt \(AB \) plötzlich zu \(CB \) und \(CB \rightarrow CD \) abgeleitet werden, was vorm. u.U. nicht ging).